Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ultra‐low velocity zones (ULVZs) are anomalous structures, generally associated with decreased seismic velocity and sometimes an increase in density, that have been detected in some locations atop the Earth's core‐mantle boundary (CMB). A wide range of ULVZ characteristics have been reported by previous studies, leading to many questions regarding their origins. The lowermost mantle beneath Antarctica and surrounding areas is not located near currently active regions of mantle upwelling or downwelling, making it a unique environment in which to study the sources of ULVZs; however, seismic sampling of this portion of the CMB has been sparse. Here, we examine core‐reflected PcP waveforms recorded by seismic stations across Antarctica using a double‐array stacking technique to further elucidate ULVZ structure beneath the southern hemisphere. Our results show widespread, variable ULVZs, some of which can be robustly modeled with 1‐D synthetics; however, others are more complex, which may reflect 2‐D or 3‐D ULVZ structure and/or ULVZs with internal velocity variability. Our findings are consistent with the concept that ULVZs can be largely explained by variable accumulations of subducted oceanic crust along the CMB. Partial melting of subducted crust and other, hydrous subducted materials may also contribute to ULVZ variability.more » « less
-
Abstract The dynamics of Earth's D″ layer at the base of the mantle plays an essential role in Earth's thermal and chemical evolution. Mantle convection in D″ is thought to result in seismic anisotropy; therefore, observations of anisotropy may be used to infer lowermost mantle flow. However, the connections between mantle flow and seismic anisotropy in D″ remain ambiguous. Here, we calculate the present‐day mantle flow field in D″ using 3D global geodynamic models. We then compute strain, a measure of deformation, outside the two large‐low velocity provinces (LLVPs) and compare the distribution of strain with previous observations of anisotropy. We find that, on a global scale, D″ materials are advected toward the LLVPs. The strains of D″ materials generally increase with time along their paths toward the LLVPs and toward deeper depths, but regions far from LLVPs may develop relative high strain as well. Materials in D″ outside the LLVPs mostly undergo lateral stretching, with the stretching direction often aligning with mantle flow direction, especially in fast flow regions. In most models, the depth‐averaged strain in D″ is >0.5 outside the LLVPs, consistent with widespread observations of seismic anisotropy. Flow directions inferred from anisotropy observations often (but not always) align with predictions from geodynamic modeling calculations.more » « less
-
SUMMARY Seismic anisotropy has been detected at many depths of the Earth, including its upper layers, the lowermost mantle and the inner core. While upper mantle seismic anisotropy is relatively straightforward to resolve, lowermost mantle anisotropy has proven to be more complicated to measure. Due to their long, horizontal ray paths along the core–mantle boundary (CMB), S waves diffracted along the CMB (Sdiff) are potentially strongly influenced by lowermost mantle anisotropy. Sdiff waves can be recorded over a large epicentral distance range and thus sample the lowermost mantle everywhere around the globe. Sdiff therefore represents a promising phase for studying lowermost mantle anisotropy; however, previous studies have pointed out some difficulties with the interpretation of differential SHdiff–SVdiff traveltimes in terms of seismic anisotropy. Here, we provide a new, comprehensive assessment of the usability of Sdiff waves to infer lowermost mantle anisotropy. Using both axisymmetric and fully 3-D global wavefield simulations, we show that there are cases in which Sdiff can reliably detect and characterize deep mantle anisotropy when measuring traditional splitting parameters (as opposed to differential traveltimes). First, we analyze isotropic effects on Sdiff polarizations, including the influence of realistic velocity structure (such as 3-D velocity heterogeneity and ultra-low velocity zones), the character of the lowermost mantle velocity gradient, mantle attenuation structure, and Earth’s Coriolis force. Secondly, we evaluate effects of seismic anisotropy in both the upper and the lowermost mantle on SHdiff waves. In particular, we investigate how SHdiff waves are split by seismic anisotropy in the upper mantle near the source and how this anisotropic signature propagates to the receiver for a variety of lowermost mantle models. We demonstrate that, in particular and predictable cases, anisotropy leads to Sdiff splitting that can be clearly distinguished from other waveform effects. These results enable us to lay out a strategy for the analysis of Sdiff splitting due to anisotropy at the base of the mantle, which includes steps to help avoid potential pitfalls, with attention paid to the initial polarization of Sdiff and the influence of source-side anisotropy. We demonstrate our Sdiff splitting method using three earthquakes that occurred beneath the Celebes Sea, measured at many transportable array stations at a suitable epicentral distance. We resolve consistent and well-constrained Sdiff splitting parameters due to lowermost mantle anisotropy beneath the northeastern Pacific Ocean.more » « less
-
Abstract Convective flow in the deep mantle controls Earth's dynamic evolution, influences plate tectonics, and has shaped Earth's current surface features. Present and past convection‐induced deformation manifests itself in seismic anisotropy, which is particularly strong in the mantle's uppermost and lowermost portions. While the general patterns of seismic anisotropy have been mapped for the upper mantle, anisotropy in the lowermost mantle (called D′′) is at an earlier stage of exploration. Here we review recent progress in methods to measure and interpret D′′ anisotropy. Our understanding of the limitations of existing methods and the development of new measurement strategies have been aided enormously by the availability of high‐performance computing resources. We give an overview of how measurements of seismic anisotropy can help constrain the mineralogy and fabric of the deep mantle. Specifically, new and creative strategies that combine multiple types of observations provide much tighter constraints on the geometry of anisotropy than have previously been possible. We also discuss how deep mantle seismic anisotropy provides insights into lowermost mantle dynamics. We summarize what we have learned so far from measurements of D′′ anisotropy, how inferences of lowermost mantle flow from measurements of seismic anisotropy relate to geodynamic models of mantle flow, and what challenges we face going forward. Finally, we discuss some of the important unsolved problems related to the dynamics of the lowermost mantle that can be elucidated in the future by combining observations of seismic anisotropy with geodynamic predictions of lowermost mantle flow.more » « less
-
Abstract We compile and make publicly available a global digital database of body wave observations of seismic anisotropy in the D′′ layer, grouped using the method used to analyze deep mantle anisotropy. Using this database, we examine the global distribution of seismic anisotropy in the D′′ layer, evaluating the question of whether seismic anisotropy is more likely to be located at the edges of the two large‐low velocity provinces (LLVPs) in Earth's mantle than elsewhere. We show that this hypothesis lacks statistical justification if we consider previously observed lowermost mantle anisotropy, although there are multiple factors that are difficult to account for quantitatively. One such factor is the global lowermost mantle ray coverage for different phases that are commonly used to detect deep mantle anisotropy in shear wave splitting studies. We find that the global ray coverage of the relevant seismic phases is highly uneven, with LLVP edges and their interiors less well‐sampled than the global average.more » « less
-
Given limited seismic coverage of the lowermost mantle, less than one-fourth of the core-mantle boundary (CMB) has been surveyed for the presence of ultra-low velocity zones (ULVZs). Investigations that sample the CMB with new geometries are therefore important to further our understanding of ULVZ origins and their potential connection to other deep Earth processes. Using core-reflected ScP waves recorded by the recently deployed Transantarctic Mountains Northern Network in Antarctica, our study aims to expand ULVZ investigations in the southern hemisphere. Our dataset samples the CMB in the vicinity of New Zealand, providing coverage between an area to the northeast, where ULVZ structure has been previously identified, and another region to the south, where prior evidence for an ULVZ was inconclusive. This area is of particular interest because the data sample across the boundary of the Pacific Large Low Shear Velocity Province (LLSVP). The Weddell Sea region near Antarctica is also well sampled, providing new information on a region that has not been previously studied. A correlative scheme between 1-D synthetic seismograms and the observed ScP data demonstrates that ULVZs are required in both study regions. Modeling uncertainties limit our ability to definitively define ULVZ characteristics but also likely indicate more complex 3-D structure. Given that ULVZs are detected within, along the edge of, and far from the Pacific LLSVP, our results support the hypothesis that ULVZs are compositionally distinct from the surrounding mantle. ULVZs may be ubiquitous along the CMB; however, they may be thinner in many regions than can be resolved by current methods. Mantle convection currents may sweep the ULVZs into thicker piles in some areas, pushing these anomalies toward the boundaries of LLSVPs.more » « less
An official website of the United States government

Full Text Available